Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Methods Mol Biol ; 2806: 75-90, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38676797

RESUMEN

The development of clinically relevant and reliable models of central nervous system tumors has been instrumental in advancing the field of Neuro-Oncology. The orthotopic intracranial injection is widely used to study the growth, invasion, and spread of tumors in a controlled environment. Orthotopic models are performed to examine tumor cells isolated from a specific region in a patient in the same site or location in an animal model. Orthotopic brain tumor models are also utilized for preclinical testing of therapeutics as they closely recapitulate the behavior of such cancer and the brain environment of patients. Below, we describe our experiences in the development of murine models of pediatric brain tumors including diffuse midline glioma (DMG), glioblastoma (GBM), and medulloblastoma. The method provides an overview of intracranial stereotactic injections in mice.


Asunto(s)
Neoplasias Encefálicas , Modelos Animales de Enfermedad , Animales , Humanos , Ratones , Neoplasias Encefálicas/patología , Niño , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Meduloblastoma/patología , Glioma/patología , Glioblastoma/patología , Xenoinjertos
2.
Neurooncol Adv ; 6(1): vdae029, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38550394

RESUMEN

Background: Diffuse intrinsic pontine gliomas (DIPGs) pose a significant challenge as a highly aggressive and currently incurable form of pediatric brain cancer, necessitating the development of novel therapeutic strategies. Omacetaxine, an FDA-approved protein synthesis inhibitor for treating certain hematological malignancies, was investigated for its potential antitumor effects against preclinical DIPG models. Methods: We employed primary DIPG cultures to study omacetaxine's cytotoxicity and its impact on colony formation. Annexin V staining and flow cytometry assessed apoptosis. Wound healing assays evaluated migration, while western blotting determined inhibition of oncogenic proteins. We tested omacetaxine's therapeutic efficacy in an orthotopic DIPG model and assessed brain penetration using mass spectrometry. Results: We found a pronounced cytotoxic activity of omacetaxine against DIPG neurospheres, with low IC50 values of approximately 20 nM. Omacetaxine exerted its anti-proliferative effect by inhibiting protein synthesis and the induction of apoptotic pathways, evidenced by significant elevated levels of cleaved caspase 3 and cleaved PARP, both key markers of apoptosis. Omacetaxine effectively targeted oncogenic players such as PDGFRα and PI3K without additional effects on the mTOR signaling pathway. Furthermore, our study revealed the inhibitory effects of omacetaxine on cell migration, and a significant reduction in integrin/FAK signaling, which plays a crucial role in tumor progression and metastasis. Conclusions: Despite these promising in vitro effects, omacetaxine's efficacy in an orthotopic DIPG model was limited due to inadequate penetration across the blood-brain barrier. As such, further research and advancements are crucial to improve the drug's brain penetration, thus enhancing its overall therapeutic potential.

3.
J Clin Invest ; 134(6)2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38319732

RESUMEN

Diffuse midline glioma (DMG), including tumors diagnosed in the brainstem (diffuse intrinsic pontine glioma; DIPG), are uniformly fatal brain tumors that lack effective treatment. Analysis of CRISPR/Cas9 loss-of-function gene deletion screens identified PIK3CA and MTOR as targetable molecular dependencies across patient derived models of DIPG, highlighting the therapeutic potential of the blood-brain barrier-penetrant PI3K/Akt/mTOR inhibitor, paxalisib. At the human-equivalent maximum tolerated dose, mice treated with paxalisib experienced systemic glucose feedback and increased insulin levels commensurate with patients using PI3K inhibitors. To exploit genetic dependence and overcome resistance while maintaining compliance and therapeutic benefit, we combined paxalisib with the antihyperglycemic drug metformin. Metformin restored glucose homeostasis and decreased phosphorylation of the insulin receptor in vivo, a common mechanism of PI3K-inhibitor resistance, extending survival of orthotopic models. DIPG models treated with paxalisib increased calcium-activated PKC signaling. The brain penetrant PKC inhibitor enzastaurin, in combination with paxalisib, synergistically extended the survival of multiple orthotopic patient-derived and immunocompetent syngeneic allograft models; benefits potentiated in combination with metformin and standard-of-care radiotherapy. Therapeutic adaptation was assessed using spatial transcriptomics and ATAC-Seq, identifying changes in myelination and tumor immune microenvironment crosstalk. Collectively, this study has identified what we believe to be a clinically relevant DIPG therapeutic combinational strategy.


Asunto(s)
Neoplasias del Tronco Encefálico , Glioma Pontino Intrínseco Difuso , Glioma , Metformina , Humanos , Ratones , Animales , Glioma Pontino Intrínseco Difuso/tratamiento farmacológico , Glioma Pontino Intrínseco Difuso/genética , Fosfatidilinositol 3-Quinasas/genética , Neoplasias del Tronco Encefálico/tratamiento farmacológico , Neoplasias del Tronco Encefálico/genética , Glioma/tratamiento farmacológico , Glioma/genética , Glioma/patología , Serina-Treonina Quinasas TOR/genética , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de las Quinasa Fosfoinosítidos-3/uso terapéutico , Glucosa , Metformina/farmacología , Microambiente Tumoral
4.
Biomedicines ; 11(11)2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-38001908

RESUMEN

Genetic histone variants have been implicated in cancer development and progression. Mutations affecting the histone 3 (H3) family, H3.1 (encoded by HIST1H3B and HIST1H3C) and H3.3 (encoded by H3F3A), are mainly associated with pediatric brain cancers. While considered poor prognostic brain cancer biomarkers in children, more recent studies have reported H3 alterations in adult brain cancer as well. Here, we established reliable droplet digital PCR based assays to detect three histone mutations (H3.3-K27M, H3.3-G34R, and H3.1-K27M) primarily linked to childhood brain cancer. We demonstrate the utility of our assays for sensitively detecting these mutations in cell-free DNA released from cultured diffuse intrinsic pontine glioma (DIPG) cells and in the cerebral spinal fluid of a pediatric patient with DIPG. We further screened tumor tissue DNA from 89 adult patients with glioma and 1 with diffuse hemispheric glioma from Southwestern Sydney, Australia, an ethnically diverse region, for these three mutations. No histone mutations were detected in adult glioma tissue, while H3.3-G34R presence was confirmed in the diffuse hemispheric glioma patient.

5.
Mol Cancer Ther ; 22(12): 1413-1421, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37683275

RESUMEN

Diffuse intrinsic pontine gliomas (DIPG) are an incurable childhood brain cancer for which novel treatments are needed. DIPGs are characterized by a mutation in the H3 histone (H3K27M), resulting in loss of H3K27 methylation and global gene dysregulation. TRX-E-009-1 is a novel anticancer agent with preclinical activity demonstrated against a range of cancers. We examined the antitumor activity of TRX-E-009-1 against DIPG neurosphere cultures and observed tumor-specific activity with IC50s ranging from 20 to 100 nmol/L, whereas no activity was observed against normal human astrocyte cells. TRX-E-009-1 exerted its anti-proliferative effect through the induction of apoptotic pathways, with marked increases in cleaved caspase 3 and cleaved PARP levels, while also restoring histone H3K27me3 methylation. Co-administration of TRX-E-009-1 and the histone deacetylase (HDAC) inhibitor SAHA extended survival in DIPG orthotopic animal models. This antitumor effect was further enhanced with irradiation. Our findings indicate that TRX-E-009-1, combined with HDAC inhibition, represents a novel, potent therapy for children with DIPG.


Asunto(s)
Neoplasias del Tronco Encefálico , Glioma Pontino Intrínseco Difuso , Glioma , Niño , Animales , Humanos , Histonas/metabolismo , Glioma Pontino Intrínseco Difuso/tratamiento farmacológico , Glioma Pontino Intrínseco Difuso/genética , Glioma Pontino Intrínseco Difuso/patología , Neoplasias del Tronco Encefálico/tratamiento farmacológico , Neoplasias del Tronco Encefálico/genética , Neoplasias del Tronco Encefálico/patología , Glioma/tratamiento farmacológico , Glioma/genética , Glioma/metabolismo , Histona Desacetilasas/genética , Línea Celular Tumoral , Mutación , Microtúbulos/metabolismo
6.
Cancer Res ; 83(16): 2716-2732, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37523146

RESUMEN

For one-third of patients with pediatric cancer enrolled in precision medicine programs, molecular profiling does not result in a therapeutic recommendation. To identify potential strategies for treating these high-risk pediatric patients, we performed in vitro screening of 125 patient-derived samples against a library of 126 anticancer drugs. Tumor cell expansion did not influence drug responses, and 82% of the screens on expanded tumor cells were completed while the patients were still under clinical care. High-throughput drug screening (HTS) confirmed known associations between activating genomic alterations in NTRK, BRAF, and ALK and responses to matching targeted drugs. The in vitro results were further validated in patient-derived xenograft models in vivo and were consistent with clinical responses in treated patients. In addition, effective combinations could be predicted by correlating sensitivity profiles between drugs. Furthermore, molecular integration with HTS identified biomarkers of sensitivity to WEE1 and MEK inhibition. Incorporating HTS into precision medicine programs is a powerful tool to accelerate the improved identification of effective biomarker-driven therapeutic strategies for treating high-risk pediatric cancers. SIGNIFICANCE: Integrating HTS with molecular profiling is a powerful tool for expanding precision medicine to support drug treatment recommendations and broaden the therapeutic options available to high-risk pediatric cancers.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Niño , Evaluación Preclínica de Medicamentos , Detección Precoz del Cáncer , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Ensayos Analíticos de Alto Rendimiento/métodos
7.
Cell Biosci ; 13(1): 132, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37480151

RESUMEN

BACKGROUND: Metastatic cancer cells exploit Epithelial-mesenchymal-transition (EMT) to enhance their migration, invasion, and resistance to treatments. Recent studies highlight that elevated levels of copper are implicated in cancer progression and metastasis. Clinical trials using copper chelators are associated with improved patient survival; however, the molecular mechanisms by which copper depletion inhibits tumor progression and metastasis are poorly understood. This remains a major hurdle to the clinical translation of copper chelators. Here, we propose that copper chelation inhibits metastasis by reducing TGF-ß levels and EMT signaling. Given that many drugs targeting TGF-ß have failed in clinical trials, partly because of severe side effects arising in patients, we hypothesized that copper chelation therapy might be a less toxic alternative to target the TGF-ß/EMT axis. RESULTS: Our cytokine array and RNA-seq data suggested a link between copper homeostasis, TGF-ß and EMT process. To validate this hypothesis, we performed single-cell imaging, protein assays, and in vivo studies. Here, we used the copper chelating agent TEPA to block copper trafficking. Our in vivo study showed a reduction of TGF-ß levels and metastasis to the lung in the TNBC mouse model. Mechanistically, TEPA significantly downregulated canonical (TGF-ß/SMAD2&3) and non-canonical (TGF-ß/PI3K/AKT, TGF-ß/RAS/RAF/MEK/ERK, and TGF-ß/WNT/ß-catenin) TGF-ß signaling pathways. Additionally, EMT markers of MMP-9, MMP-14, Vimentin, ß-catenin, ZEB1, and p-SMAD2 were downregulated, and EMT transcription factors of SNAI1, ZEB1, and p-SMAD2 accumulated in the cytoplasm after treatment. CONCLUSIONS: Our study suggests that copper chelation therapy represents a potentially effective therapeutic approach for targeting TGF-ß and inhibiting EMT in a diverse range of cancers.

8.
Front Oncol ; 13: 1123492, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36937401

RESUMEN

Introduction: Ependymomas (EPN) are the third most common malignant brain cancer in children. Treatment strategies for pediatric EPN have remained unchanged over recent decades, with 10-year survival rates stagnating at just 67% for children aged 0-14 years. Moreover, a proportion of patients who survive treatment often suffer long-term neurological side effects as a result of therapy. It is evident that there is a need for safer, more effective treatments for pediatric EPN patients. There are ten distinct subgroups of EPN, each with their own molecular and prognostic features. To identify and facilitate the testing of new treatments for EPN, in vivo laboratory models representative of the diverse molecular subtypes are required. Here, we describe the establishment of a patient-derived orthotopic xenograft (PDOX) model of posterior fossa A (PFA) EPN, derived from a metastatic cranial lesion. Methods: Patient and PDOX tumors were analyzed using immunohistochemistry, DNA methylation profiling, whole genome sequencing (WGS) and RNA sequencing. Results: Both patient and PDOX tumors classified as PFA EPN by methylation profiling, and shared similar histological features consistent with this molecular subgroup. RNA sequencing revealed that gene expression patterns were maintained across the primary and metastatic tumors, as well as the PDOX. Copy number profiling revealed gains of chromosomes 7, 8 and 19, and loss of chromosomes 2q and 6q in the PDOX and matched patient tumor. No clinically significant single nucleotide variants were identified, consistent with the low mutation rates observed in PFA EPN. Overexpression of EZHIP RNA and protein, a common feature of PFA EPN, was also observed. Despite the aggressive nature of the tumor in the patient, this PDOX was unable to be maintained past two passages in vivo. Discussion: Others who have successfully developed PDOX models report some of the lowest success rates for EPN compared to other pediatric brain cancer types attempted, with loss of tumorigenicity not uncommon, highlighting the challenges of propagating these tumors in the laboratory. Here, we discuss our collective experiences with PFA EPN PDOX model generation and propose potential approaches to improve future success in establishing preclinical EPN models.

9.
Cancer Cell ; 41(4): 660-677.e7, 2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-37001527

RESUMEN

Pediatric solid and central nervous system tumors are the leading cause of cancer-related death among children. Identifying new targeted therapies necessitates the use of pediatric cancer models that faithfully recapitulate the patient's disease. However, the generation and characterization of pediatric cancer models has significantly lagged behind adult cancers, underscoring the urgent need to develop pediatric-focused cell line resources. Herein, we establish a single-site collection of 261 cell lines, including 224 pediatric cell lines representing 18 distinct extracranial and brain childhood tumor types. We subjected 182 cell lines to multi-omics analyses (DNA sequencing, RNA sequencing, DNA methylation), and in parallel performed pharmacological and genetic CRISPR-Cas9 loss-of-function screens to identify pediatric-specific treatment opportunities and biomarkers. Our work provides insight into specific pathway vulnerabilities in molecularly defined pediatric tumor classes and uncovers biomarker-linked therapeutic opportunities of clinical relevance. Cell line data and resources are provided in an open access portal.


Asunto(s)
Neoplasias Encefálicas , Niño , Humanos , Neoplasias Encefálicas/patología , Línea Celular Tumoral
10.
Adv Drug Deliv Rev ; 196: 114777, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36931346

RESUMEN

Brain cancer remains the deadliest cancer. The blood-brain barrier (BBB) is impenetrable to most drugs and is a complex 3D network of multiple cell types including endothelial cells, astrocytes, and pericytes. In brain cancers, the BBB becomes disrupted during tumor progression and forms the blood-brain tumor barrier (BBTB). To advance therapeutic development, there is a critical need for physiologically relevant BBB in vitro models. 3D cell systems are emerging as valuable preclinical models to accelerate discoveries for diseases. Given the versatility and capability of 3D cell models, their potential for modelling the BBB and BBTB is reviewed. Technological advances of BBB models and challenges of in vitro modelling the BBTB, and application of these models as tools for assessing therapeutics and nano drug delivery, are discussed. Quantitative, in vitro BBB models that are predictive of effective brain cancer therapies will be invaluable for accelerating advancing new treatments to the clinic.


Asunto(s)
Barrera Hematoencefálica , Neoplasias Encefálicas , Humanos , Barrera Hematoencefálica/metabolismo , Células Endoteliales , Neoplasias Encefálicas/patología , Encéfalo/patología , Organoides/patología
11.
Cancer Res ; 82(17): 2980-3001, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-35802025

RESUMEN

Forkhead box R2 (FOXR2) is a forkhead transcription factor located on the X chromosome whose expression is normally restricted to the testis. In this study, we performed a pan-cancer analysis of FOXR2 activation across more than 10,000 adult and pediatric cancer samples and found FOXR2 to be aberrantly upregulated in 70% of all cancer types and 8% of all individual tumors. The majority of tumors (78%) aberrantly expressed FOXR2 through a previously undescribed epigenetic mechanism that involves hypomethylation of a novel promoter, which was functionally validated as necessary for FOXR2 expression and proliferation in FOXR2-expressing cancer cells. FOXR2 promoted tumor growth across multiple cancer lineages and co-opted ETS family transcription circuits across cancers. Taken together, this study identifies FOXR2 as a potent and ubiquitous oncogene that is epigenetically activated across the majority of human cancers. The identification of hijacking of ETS transcription circuits by FOXR2 extends the mechanisms known to active ETS transcription factors and highlights how transcription factor families cooperate to enhance tumorigenesis. SIGNIFICANCE: This work identifies a novel promoter that drives aberrant FOXR2 expression and delineates FOXR2 as a pan-cancer oncogene that specifically activates ETS transcriptional circuits across human cancers. See related commentary by Liu and Northcott, p. 2977.


Asunto(s)
Factores de Transcripción Forkhead , Neoplasias , Adulto , Carcinogénesis/genética , Proliferación Celular , Niño , Epigénesis Genética , Factores de Transcripción Forkhead/genética , Humanos , Masculino , Neoplasias/genética , Oncogenes/genética , Proteínas Proto-Oncogénicas c-ets/genética , Proteínas Proto-Oncogénicas c-ets/metabolismo , Activación Transcripcional
12.
Theranostics ; 12(10): 4734-4752, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35832071

RESUMEN

Despite significant advances in research, the prognosis for both primary and secondary brain cancers remains poor. The blood-brain barrier (BBB) is a complex and unique semi-permeable membrane that serves as a protective structure to maintain homeostasis within the brain. However, it presents a significant challenge for the delivery of therapeutics into the brain and tumor. Some brain tumors are known to compromise BBB integrity, producing a highly heterogeneous vasculature known as the blood-tumor-barrier (BTB). Identifying strategies to bypass these obstacles to improve the penetrability of anticancer therapeutics has been the focus of research in this area. In this review, we discuss the strategies that have been investigated to evade or alter the cellular and molecular barriers of both the BBB and the BTB and detail the methods currently under preclinical or clinical investigation, including molecular, biological, and physical processes to overcome the BBB or BTB. Increased understanding of the BBB and BTB and the current methods of overcoming these barriers will enable the development of new and more effective treatment strategies for brain tumors.


Asunto(s)
Barrera Hematoencefálica , Neoplasias Encefálicas , Transporte Biológico , Barrera Hematoencefálica/patología , Encéfalo/patología , Neoplasias Encefálicas/patología , Sistemas de Liberación de Medicamentos , Humanos
13.
EMBO Mol Med ; 14(4): e14608, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-34927798

RESUMEN

Biomarkers which better match anticancer drugs with cancer driver genes hold the promise of improved clinical responses and cure rates. We developed a precision medicine platform of rapid high-throughput drug screening (HTS) and patient-derived xenografting (PDX) of primary tumor tissue, and evaluated its potential for treatment identification among 56 consecutively enrolled high-risk pediatric cancer patients, compared with conventional molecular genomics and transcriptomics. Drug hits were seen in the majority of HTS and PDX screens, which identified therapeutic options for 10 patients for whom no targetable molecular lesions could be found. Screens also provided orthogonal proof of drug efficacy suggested by molecular analyses and negative results for some molecular findings. We identified treatment options across the whole testing platform for 70% of patients. Only molecular therapeutic recommendations were provided to treating oncologists and led to a change in therapy in 53% of patients, of whom 29% had clinical benefit. These data indicate that in vitro and in vivo drug screening of tumor cells could increase therapeutic options and improve clinical outcomes for high-risk pediatric cancer patients.


Asunto(s)
Antineoplásicos , Neoplasias , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Niño , Modelos Animales de Enfermedad , Genómica/métodos , Humanos , Neoplasias/patología , Medicina de Precisión/métodos , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Cancers (Basel) ; 13(24)2021 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-34944870

RESUMEN

Diffuse midline gliomas (DMGs) are invariably fatal pediatric brain tumours that are inherently resistant to conventional therapy. In recent years our understanding of the underlying molecular mechanisms of DMG tumorigenicity has resulted in the identification of novel targets and the development of a range of potential therapies, with multiple agents now being progressed to clinical translation to test their therapeutic efficacy. Here, we provide an overview of the current therapies aimed at epigenetic and mutational drivers, cellular pathway aberrations and tumor microenvironment mechanisms in DMGs in order to aid therapy development and facilitate a holistic approach to patient treatment.

15.
Neurooncol Adv ; 3(1): vdab087, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34458732

RESUMEN

BACKGROUND: Pediatric high-grade glioma is a devastating diagnosis. There has been no improvement in outcomes for several decades, with few children surviving 2 years postdiagnosis. Research progress has been hampered by a lack of tumor samples, which can be used to develop and test novel therapies. Postmortem tumor donations are therefore a valuable opportunity to collect tissue. In this study, we explored Australian parents' experiences of donating their child's tumor for research after their child had died. METHODS: We collected qualitative data from 11 bereaved parents who consented to donate samples of their child's high-grade glioma for research postmortem. We asked parents about their perceived benefits/burdens of the autopsy, recommendations for improving consent discussions, and decision regret. RESULTS: Parents hoped that their donation would help to find a cure for future children with high-grade glioma. They described feeling comforted knowing that their child's suffering may help others. Some parents also felt that the donation would help them better understand their child's tumor. Although some parents described discomfort about procedures leading up to the autopsy, parents reported minimal regret regarding their decision to donate their child's tumor. Parents provided recommendations to improve consent discussions, such as providing more information about the autopsy logistics and why the donation was needed. CONCLUSION: Parents consented to autopsy for altruistic reasons, although donation may also assist parents in their grieving. There is a strong need to improve access to tumor donations for any family who wishes to donate.

16.
Cancer Cytopathol ; 129(10): 805-818, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34043284

RESUMEN

BACKGROUND: The development of high-throughput drug screening (HTS) using primary cultures provides a promising, clinically translatable approach to tailoring treatment strategies for patients with cancer. However, this has been challenging for solid tumors because of often limited amounts of tissue available. In most cases, in vitro expansion is required before HTS, which may lead to overgrowth and contamination by non-neoplastic cells. METHODS: In this study, hematoxylin and eosin staining and immunohistochemical staining were performed on 129 cytopathology cases from 95 patients. These cytopathology cases comprised cell block preparations derived from primary tumor specimens or patient-derived xenografts as part of a pediatric precision oncology trial. Cytopathology cases were compared with the morphology and immunohistochemical staining profile of the original tumor. Cases were reported as tumor cells present, equivocal, or tumor cells absent. The HTS results from cytopathologically validated cultures were incorporated into a multidisciplinary tumor board report issued to the treating clinician to guide clinical decision making. RESULTS: On cytopathologic examination, tumor cells were present in 77 of 129 cases (60%) and were absent in 38 of 129 cases (29%), whereas 14 of 129 cases (11%) were equivocal. Cultures that contained tumor cells resembled the tumors from which they were derived. CONCLUSIONS: Cytopathologic examination of tumor cell block preparations is feasible and provides detailed morphologic characterization. Cytopathologic examination is essential for ensuring that samples submitted for HTS contain representative tumor cells and that in vitro drug sensitivity data are clinically translatable.


Asunto(s)
Neoplasias , Humanos , Inmunohistoquímica , Oncología Médica , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Patología , Medicina de Precisión
17.
Cell Rep ; 35(2): 108994, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33852836

RESUMEN

Diffuse intrinsic pontine glioma (DIPG) is an aggressive and incurable childhood brain tumor for which new treatments are needed. CBL0137 is an anti-cancer compound developed from quinacrine that targets facilitates chromatin transcription (FACT), a chromatin remodeling complex involved in transcription, replication, and DNA repair. We show that CBL0137 displays profound cytotoxic activity against a panel of patient-derived DIPG cultures by restoring tumor suppressor TP53 and Rb activity. Moreover, in an orthotopic model of DIPG, treatment with CBL0137 significantly extends animal survival. The FACT subunit SPT16 is found to directly interact with H3.3K27M, and treatment with CBL0137 restores both histone H3 acetylation and trimethylation. Combined treatment of CBL0137 with the histone deacetylase inhibitor panobinostat leads to inhibition of the Rb/E2F1 pathway and induction of apoptosis. The combination of CBL0137 and panobinostat significantly prolongs the survival of mice bearing DIPG orthografts, suggesting a potential treatment strategy for DIPG.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias del Tronco Encefálico/tratamiento farmacológico , Proteínas de Unión al ADN/genética , Glioma Pontino Intrínseco Difuso/tratamiento farmacológico , Epigénesis Genética , Proteínas del Grupo de Alta Movilidad/genética , Histonas/genética , Neuroglía/efectos de los fármacos , Factores de Elongación Transcripcional/genética , Acetilación , Animales , Neoplasias del Tronco Encefálico/genética , Neoplasias del Tronco Encefálico/mortalidad , Neoplasias del Tronco Encefálico/patología , Carbazoles/farmacología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Niño , Cromatina/química , Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , Glioma Pontino Intrínseco Difuso/genética , Glioma Pontino Intrínseco Difuso/mortalidad , Glioma Pontino Intrínseco Difuso/patología , Sinergismo Farmacológico , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F1/metabolismo , Epigenoma , Proteínas del Grupo de Alta Movilidad/metabolismo , Histonas/antagonistas & inhibidores , Histonas/metabolismo , Humanos , Metilación , Ratones , Neuroglía/metabolismo , Neuroglía/patología , Panobinostat/farmacología , Cultivo Primario de Células , Proteína de Retinoblastoma/genética , Proteína de Retinoblastoma/metabolismo , Transducción de Señal , Análisis de Supervivencia , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Elongación Transcripcional/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Cancers (Basel) ; 13(6)2021 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-33805713

RESUMEN

Diffuse Intrinsic Pontine Gliomas (DIPGs) are highly aggressive paediatric brain tumours. Currently, irradiation is the only standard treatment, but is palliative in nature and most patients die within 12 months of diagnosis. Novel therapeutic approaches are urgently needed for the treatment of this devastating disease. We have developed non-persistent gold nano-architectures (NAs) functionalised with human serum albumin (HSA) for the delivery of doxorubicin. Doxorubicin has been previously reported to be cytotoxic in DIPG cells. In this study, we have preclinically evaluated the cytotoxic efficacy of doxorubicin delivered through gold nanoarchitectures (NAs-HSA-Dox). We found that DIPG neurospheres were equally sensitive to doxorubicin and doxorubicin-loaded NAs. Colony formation assays demonstrated greater potency of NAs-HSA-Dox on colony formation compared to doxorubicin. Western blot analysis indicated increased apoptotic markers cleaved Parp, cleaved caspase 3 and phosphorylated H2AX in NAs-HSA-Dox treated DIPG neurospheres. Live cell content and confocal imaging demonstrated significantly higher uptake of NAs-HSA-Dox into DIPG neurospheres compared to doxorubicin alone. Despite the potency of the NAs in vitro, treatment of an orthotopic model of DIPG showed no antitumour effect. This disparate outcome may be due to the integrity of the blood-brain barrier and highlights the need to develop therapies to enhance penetration of drugs into DIPG.

19.
Nat Commun ; 12(1): 971, 2021 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-33579942

RESUMEN

Diffuse intrinsic pontine glioma (DIPG) is an incurable malignant childhood brain tumor, with no active systemic therapies and a 5-year survival of less than 1%. Polyamines are small organic polycations that are essential for DNA replication, translation and cell proliferation. Ornithine decarboxylase 1 (ODC1), the rate-limiting enzyme in polyamine synthesis, is irreversibly inhibited by difluoromethylornithine (DFMO). Herein we show that polyamine synthesis is upregulated in DIPG, leading to sensitivity to DFMO. DIPG cells compensate for ODC1 inhibition by upregulation of the polyamine transporter SLC3A2. Treatment with the polyamine transporter inhibitor AMXT 1501 reduces uptake of polyamines in DIPG cells, and co-administration of AMXT 1501 and DFMO leads to potent in vitro activity, and significant extension of survival in three aggressive DIPG orthotopic animal models. Collectively, these results demonstrate the potential of dual targeting of polyamine synthesis and uptake as a therapeutic strategy for incurable DIPG.


Asunto(s)
Transporte Biológico/efectos de los fármacos , Neoplasias del Tronco Encefálico/tratamiento farmacológico , Glioma Pontino Intrínseco Difuso/tratamiento farmacológico , Poliaminas/metabolismo , Poliaminas/farmacología , Animales , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Replicación del ADN/efectos de los fármacos , Transportadores de Ácidos Dicarboxílicos , Modelos Animales de Enfermedad , Eflornitina/farmacología , Eflornitina/uso terapéutico , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Proteínas de Transporte de Membrana Mitocondrial , Ornitina Descarboxilasa/efectos de los fármacos , Ornitina Descarboxilasa/metabolismo , Poliaminas/uso terapéutico
20.
Neuro Oncol ; 22(1): 139-151, 2020 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-31398252

RESUMEN

BACKGROUND: Despite increased understanding of the genetic events underlying pediatric high-grade gliomas (pHGGs), therapeutic progress is static, with poor understanding of nongenomic drivers. We therefore investigated the role of alterations in mitochondrial function and developed an effective combination therapy against pHGGs. METHODS: Mitochondrial DNA (mtDNA) copy number was measured in a cohort of 60 pHGGs. The implication of mtDNA alteration in pHGG tumorigenesis was studied and followed by an efficacy investigation using patient-derived cultures and orthotopic xenografts. RESULTS: Average mtDNA content was significantly lower in tumors versus normal brains. Decreasing mtDNA copy number in normal human astrocytes led to a markedly increased tumorigenicity in vivo. Depletion of mtDNA in pHGG cells promoted cell migration and invasion and therapeutic resistance. Shifting glucose metabolism from glycolysis to mitochondrial oxidation with the adenosine monophosphate-activated protein kinase activator AICAR (5-aminoimidazole-4-carboxamide ribonucleotide) or the pyruvate dehydrogenase kinase inhibitor dichloroacetate (DCA) significantly inhibited pHGG viability. Using DCA to shift glucose metabolism to mitochondrial oxidation and then metformin to simultaneously target mitochondrial function disrupted energy homeostasis of tumor cells, increasing DNA damage and apoptosis. The triple combination with radiation therapy, DCA and metformin led to a more potent therapeutic effect in vitro and in vivo. CONCLUSIONS: Our results suggest metabolic alterations as an onco-requisite factor of pHGG tumorigenesis. Targeting reduced mtDNA quantity represents a promising therapeutic strategy for pHGG.


Asunto(s)
Aminoimidazol Carboxamida/análogos & derivados , Neoplasias Encefálicas/metabolismo , ADN Mitocondrial/metabolismo , Ácido Dicloroacético/farmacología , Metabolismo Energético/fisiología , Glioma/metabolismo , Ribonucleótidos/farmacología , Aminoimidazol Carboxamida/farmacología , Animales , Neoplasias Encefálicas/genética , Niño , ADN Mitocondrial/efectos de los fármacos , ADN Mitocondrial/efectos de la radiación , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/efectos de la radiación , Dosificación de Gen , Glioma/genética , Glucólisis/efectos de los fármacos , Glucólisis/efectos de la radiación , Humanos , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...